Why do babies get jaundice when they are born, and why does a session on a sun bed help get rid of it?
Babies are not actually born yellow; it develops when they are first born. Every minute we make lots of red blood cells to replace those that have worn out. When old red blood cells are broken down, a yellow-coloured waste product, called bilirubin, is produced. Bilirubin is insoluble in water until it is metabolised by enzymes in the liver which add sugars to the molecule to help it dissolve meaning that it can be excreted in bile, and in urine. However, a developing baby doesn't need this biochemical pathway for metabolising bilirubin until it is born, because the mother removes the bilirubin via the placenta. But when some babies are first born and can no longer rely on their mother to help remove bilirubin for them, particularly if they are premature or have liver problems, there can be a delay in switching on this metabolic pathway and a backlog of bilirubin builds up around the body, making the child yellow. Because , until it is metabolised, bilirubin is insoluble in water but dissolves very well in fats, it accumulates in the skin, where we store most of our body fats, explaining why the babies appear yellow. If it is allowed to continue for a long time, jaundice can cause permanent damage to the brain, but if the baby is put under a blue light, a photochemical reaction occurs, breaking up the bilirubin and making it water soluble. This allows the baby to excrete the excess bilirubin in its urine. The process was discovered accidentally by Judith Ward who used to take babies into sunlight because she thought it was good for them. Having returned them to the hospital, she found that a previously-jaundiced baby had normally-coloured skin on sun-exposed areas, but yellow skin where the nappy had been. As a result the method was quickly adopted for the treatment of neonatal jaundice.
Sunday, November 29, 2009
Why do babies get jaundice when they are born, and why does a session on a sun bed help get rid of it?
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment